Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Bioorg Med Chem Lett ; 59: 128527, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007722

RESUMO

To investigate the contribution of hydrogen bonding between the 14-hydroxy group and the 6-amide chain on the binding affinity of nalfurafine toward KOR and OX1R, we prepared the 14-H and 14-dehydrated nalfurafine and their five-membered D-ring nalfurafine (D-nor-nalfurafine) derivatives. The 14-H and 14-dehydrated nalfurafine derivatives showed almost the same affinity for KOR as nalfurafine and more potent affinity for OX1R. On the other hand, 14-H and 14-dehydrated D-nor-nalfurafine derivatives showed weak affinity for KOR and almost no affinity for OX1R. The conformational analyses suggested that the 6-amide chains of the nalfurafine derivatives are mainly oriented just at or downward from the C-ring, while those of the D-nor-nalfurafine derivatives were mainly oriented toward the upper side of the C-ring even in the absence of the 14-hydroxy group. We postulated that the ion-dipole interaction between the 6-amide and the 16-nitrogen might stabilize the upwardly oriented 6-amide group. These results suggested that the 14-hydroxy group and the ion-dipole interaction would play important roles in the orientation of the 6-amide group, which might control the affinity between KOR and OX1R.


Assuntos
Morfinanos/farmacologia , Receptores de Orexina/metabolismo , Receptores Opioides/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 53: 116552, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894610

RESUMO

The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the µ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.


Assuntos
Analgésicos/farmacologia , Morfinanos/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Analgésicos/síntese química , Analgésicos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 56: 128485, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861349

RESUMO

Mas-related G protein-coupled receptor X2 (MRGPRX2) mediates the itch response in neurons and is involved in atopic dermatitis (AD)-associated inflammation and itch. Potent and MRGPRX2-selective ligands are essential to an understanding of the detailed function of the receptor and to develop new therapeutic agents for its related diseases. (+)-TAN-67 (1), the enantiomer of the δ-opioid receptor (DOR) selective ligand (-)-TAN-67 (1), has been reported to activate MRGPRX2, although (+)-1 also interacts with DOR, which prevents investigators from interrogating the function of MRGPRX2. Here, we have succeeded in developing a novel unnatural morphinan compound (+)-2a by a transformation based on the structure of (+)-1, which removes the DOR binding affinity. (+)-2a activated both human MRGPRX2 and the mouse orthologue Mrgprb2 in in vitro experiments and induced itch-like behaviors in mice to the same extent as (+)-1. The (+)-2a-induced itch response in mice was suppressed by administration of the tripeptide QWF, an MRGPRX2/Mrgprb2 antagonist, or the antipruritic drug nalfurafine. Together, (+)-2a serves as a useful tool to elucidate the itch-related function/action of MRGPRX2 and its mouse orthologue Mrgprb2.


Assuntos
Comportamento Animal/efeitos dos fármacos , Desenvolvimento de Medicamentos , Morfinanos/efeitos adversos , Proteínas do Tecido Nervoso/metabolismo , Prurido/induzido quimicamente , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Ligantes , Camundongos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores Opioides delta , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 225: 113791, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450495

RESUMO

Cytotoxic T lymphocyte (CTL), a key effector cell in aplastic anemia (AA) immune injury, is shown to be a potential target for AA drug therapy. However, there is no candidate for this target till now. Oriented by the inhibition activity of CTL and macrophage derived nitric oxide (NO), a series of novel sinomenine derivatives on rings A and C are designed, synthesized and screened. Among them, compound 3a demonstrates the best inhibitory activity on CTL with an IC50 value of 2.3 µM, and a 97.1% inhibiton rate on macrophage NO production without significant cytotoxicity. Further, compound 3a exhibits substantial therapeutic efficacy on immune-mediated BM failure in AA model mice by improving the symptoms of anemia and the function of BM hematopoiesis, and shows more advantages in life quality improving than cyclosporine A (CsA). Its efficacy on AA at least partly comes from targeting on activated cluster of differentiation (CD)8+ T cell. Additionally, 3a also shows much less toxicity (LD50 > 10.0 g/kg) than sinomenine (LD50 = 1.1 g/kg) in preliminary acute toxicity assessment in mice, and has a low risk to inhibit hERG to cause cardiotoxicity. These results indicate that compound 3a merits further investigation for AA treatment by targeting on CTL.


Assuntos
Anemia Aplástica/tratamento farmacológico , Antirreumáticos/farmacologia , Desenho de Fármacos , Morfinanos/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Anemia Aplástica/imunologia , Animais , Antirreumáticos/síntese química , Antirreumáticos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Relação Estrutura-Atividade , Linfócitos T Citotóxicos/imunologia
5.
Nat Prod Res ; 35(14): 2360-2364, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31621417

RESUMO

A novel structure of sinomenine isoxazole derivatives is synthesised from sinomenine hydrochloride and aromatic aldehydes and requires six steps. 19 target compounds have been obtained in good yields. The sinomenine hydrochloride transforms to 4-alkynyl sinomenine, which is a key intermediate product to synthesise the target sinomenine isoxazole compounds, after a neutralisation reaction with ammonia and substitution reaction with 3-chloropropyne. Another key intermediate product is 1,3-dipole, which can be obtained from aromatic aldehyde. After treatment with hydroxylamine hydrochloride and then sodium carbonate solution, aromatic aldehyde is converted to aldehyde oxime, which reacts with N-chlorosuccinimide (NCS) to afford aryl hydroximino chloride. 1,3-Dipole is eventually formed in situ while triethylamine (TEA) in DMF is added dropwise. Then 4-alkynyl sinomenine is added to provide the sinomenine isoxazole derivative via 1,3-dipolar cycloaddition reaction as the key step. All the target compounds are characterised by melting point, 1H NMR, 13C NMR, HRMS and FT-IR spectroscopy.


Assuntos
Reação de Cicloadição , Isoxazóis/síntese química , Morfinanos/síntese química , Aldeídos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morfinanos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Med Chem ; 63(14): 7663-7694, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32530286

RESUMO

We previously identified a pyridomorphinan (6, SRI-22138) possessing a 4-chlorophenyl substituent at the 5'-position on the pyridine and a 3-phenylpropoxy at the 14-position of the morphinan as a mixed µ opioid receptor (MOR) agonist and δ/κ opioid receptor (DOR/KOR) antagonist with potent antinociceptive activity and diminished tolerance and dependence in rodents. Structural variations at the 5'- and 14-positions of this molecule gave insights into the structure-activity relationships for binding and functional activity. Subtle structural changes exerted significant influence, particularly on the ability of the compounds to function as agonists at the MOR. In vivo evaluation identified compound 20 (SRI-39067) as a MOR agonist/DOR antagonist that produced systemically active potent antinociceptive activity in tail-flick assay in mice, with diminished tolerance, dependence/withdrawal, reward liability, and respiratory depression versus morphine. These results support the hypothesis that mixed MOR agonist/DOR antagonist ligands may emerge as novel opioid analgesics with reduced side effects.


Assuntos
Analgésicos Opioides/uso terapêutico , Morfinanos/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Piridinas/uso terapêutico , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Analgésicos Opioides/síntese química , Analgésicos Opioides/metabolismo , Animais , Células CHO , Cricetulus , Desenho de Fármacos , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/metabolismo , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/metabolismo , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 29(18): 2655-2658, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375290

RESUMO

The orexin 1 receptor (OX1R) antagonists carrying a morphinan skeleton such as YNT-707 (2) and YNT-1310 (3) showed potent and extremely high selective antagonistic activity against OX1R. In the course of our study of the essential structure of YNT-707 for high binding affinity against OX1R, we prepared derivatives of 2 without the D- and 4,5-epoxy rings to clarify the roles of these structural determinants toward OX1R antagonistic activity. The D- and 4,5-epoxy rings played important roles for the active orientation of the 17-sulfonamide and 6-amide side chains. Finally, we identified the simple structure required for selective OX1R antagonistic activity in the complex morphinan skeleton, which is expected to be a useful scaffold for further design of OX1R ligands.


Assuntos
Morfinanos/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Antagonistas dos Receptores de Orexina/síntese química , Antagonistas dos Receptores de Orexina/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
8.
Angew Chem Int Ed Engl ; 58(47): 17016-17025, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469221

RESUMO

Bioactive compound design based on natural product (NP) structure may be limited because of partial coverage of NP-like chemical space and biological target space. These limitations can be overcome by combining NP-centered strategies with fragment-based compound design through combination of NP-derived fragments to afford structurally unprecedented "pseudo-natural products" (pseudo-NPs). The design, synthesis, and biological evaluation of a collection of indomorphan pseudo-NPs that combine biosynthetically unrelated indole- and morphan-alkaloid fragments are described. Indomorphane derivative Glupin was identified as a potent inhibitor of glucose uptake by selectively targeting and upregulating glucose transporters GLUT-1 and GLUT-3. Glupin suppresses glycolysis, reduces the levels of glucose-derived metabolites, and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT-1 and GLUT-3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity.


Assuntos
Produtos Biológicos/farmacologia , Proliferação de Células , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 3/antagonistas & inibidores , Glucose/metabolismo , Morfinanos/síntese química , Neoplasias/tratamento farmacológico , Transporte Biológico , Ciclo Celular , Glicólise , Humanos , Células Tumorais Cultivadas
9.
Bioorg Med Chem ; 26(14): 4254-4263, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30054192

RESUMO

With the purpose of identifying novel selective κ opioid receptor (KOR) antagonists as potential antidepressants from nepenthone analogues, starting from N-nor-N-cyclopropylmethyl-nepenthone (SLL-020ACP), a highly selective and potent KOR agonist, a series of 7ß-methyl-nepenthone analogues was conceived, synthesized and assayed on opioid receptors based on the concept of hybridization. According to the pharmacological results, the functional reversal observed in orvinol analogues by introduction of 7ß-methyl substituent could not be reproduced in nepenthone analogues. Alternatively, introduction of 7ß-methyl substituent was associated with substantial loss of both subtype selectivity and potency but not efficacy for nepenthone analogues, which was not found in 7ß-methyl orvinol analogues. Surprisingly, SLL-603, a 7ß-methyl analogue of SLL-020ACP, was identified to be a KOR full agonist. The possible molecular mechanism for the heterogeneity in activity cliff was also investigated. In conclusion, 7ß-methyl substituent was a structural locus associated with activity cliff and demonstrated as a pharmacological heterogeneity between nepenthone and orvinol analogues that warrants further investigations.


Assuntos
Morfinanos/farmacologia , Receptores Opioides kappa/agonistas , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 28(4): 774-777, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29338909

RESUMO

The 14-dehydration- and 14-H derivatives of the orexin 1 receptor (OX1R) antagonist YNT-707 (2) were synthesized. The obtained derivatives showed higher affinities for OX1R than the corresponding 14-hydroxy derivatives. The conformational analysis suggested that the 17-sulfonamide groups in the derivatives without the 14-hydroxy group have a greater tendency to be oriented toward the upper side of the D-ring compared with the 14-hydroxy derivatives. Additionally, the 14-dehydration-derivative with 6α-amide side chain showed significantly higher affinity than the 14-hydroxy derivative, while the corresponding 14-H derivative showed only slightly higher affinity. Thus, the 14-hydroxy group strongly affects the affinity of the antagonist for the OX1R.


Assuntos
Morfinanos/química , Antagonistas dos Receptores de Orexina/química , Sulfonamidas/química , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Morfinanos/síntese química , Antagonistas dos Receptores de Orexina/síntese química , Estereoisomerismo , Sulfonamidas/síntese química
11.
J Asian Nat Prod Res ; 20(3): 277-291, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29090602

RESUMO

A series of new sinomenine derivatives were designed, synthesized, and evaluated in tumor inhibitory activity, such as human triple negative breast cancer cell line (MDA-MB-231), glioma cell line (A172), human lung cancer cell line (A549), human colon cancer cell line (HCT-8). The modifications were carried out on rings A and C of the sinomenine by esterificating on phenolic hydroxyl with good yields. The highlight of this work was that the synthetic procedures were concise and sinomenine derivatives demonstrated promising antitumor activities.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Morfinanos/síntese química , Morfinanos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Morfinanos/química , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade
12.
Handb Exp Pharmacol ; 247: 3-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27787711

RESUMO

The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Morfinanos/farmacologia , Quinolonas/farmacologia , Receptores Opioides delta/efeitos dos fármacos , Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Humanos , Indóis/síntese química , Ligantes , Morfinanos/síntese química , Quinolonas/síntese química , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inibidores , Relação Estrutura-Atividade
13.
Chem Pharm Bull (Tokyo) ; 65(11): 1085-1088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093296

RESUMO

κ-Opioid receptor agonists with high selectivity over the µ-opioid receptor and peripheral selectivity are attractive targets in the development of drugs for pain. We have previously attempted to create novel analgesics with peripheral selective κ-opioid receptor agonist on the basis of TRK-820. In this study, we elucidated the biological properties of 17-hydroxy-cyclopropylmethyl and 10α-hydroxy derivatives. These compounds were found to have better κ-opioid receptor selectivity and peripheral selectivity than TRK-820.


Assuntos
Analgésicos/farmacologia , Descoberta de Drogas , Morfinanos/farmacologia , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Compostos de Espiro/farmacologia , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Moleculares , Conformação Molecular , Morfinanos/síntese química , Morfinanos/química , Dor/induzido quimicamente , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
14.
J Med Chem ; 60(22): 9407-9412, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29053268

RESUMO

Position 6 of the morphinan skeleton plays a key role in the µ-opioid receptor (MOR) activity in vitro and in vivo. We describe the consequence of the 6-carbonyl group deletion in N-methylmorphinan-6-ones 1-4 on ligand-MOR interaction, signaling, and antinociception. While 6-desoxo compounds 1a, 2a, and 4a show similar profiles to their 6-keto counterparts, the 6-desoxo-14-benzyloxy substituted 3a displays significantly increased MOR binding and agonist potency and a distinct binding mode compared with its analogue 3.


Assuntos
Analgésicos/farmacologia , Morfinanos/farmacologia , Receptores Opioides mu/agonistas , Analgésicos/síntese química , Animais , Células CHO , Membrana Celular/fisiologia , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/fisiologia , Ligantes , Simulação de Acoplamento Molecular , Morfinanos/síntese química , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade
15.
Chem Pharm Bull (Tokyo) ; 65(10): 920-929, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966276

RESUMO

Buprenorphine shows strong analgesic effects on moderate to severe pain. Although buprenorphine can be used more safely than other opioid analgesics, it has room for improvement in clinical utility. Investigation of compounds structurally related to buprenorphine should be an approach to obtain novel analgesics with safer and improved profiles compared to buprenorphine. In the course of our previous studies, we observed that derivatives obtained by cyclizing C-homomorphinans were structurally related to buprenorphine. Hence, we synthesized cyclized C-homomorphinan derivatives with various oxygen functionalities on the side chains and evaluated their in vitro pharmacological profiles for the opioid receptors. Among the tested compounds, methyl ketone 2a with an N-methyl group showed full agonistic activities for the µ and the δ receptors and partial agonistic activity for the κ receptor. These properties were similar to those of norbuprenorphine, a major metabolite of buprenorphine, which reportedly contributes to the antinociceptive effect of buprenorphine. From these results, we concluded that cyclized C-homomorphinan would be a possible lead compound to obtain novel analgesics with buprenorphine-like properties.


Assuntos
Analgésicos Opioides/química , Morfinanos/química , Analgésicos Opioides/síntese química , Animais , Buprenorfina/análogos & derivados , Buprenorfina/química , Células CHO , Cricetinae , Cricetulus , Ciclização , Humanos , Cinética , Conformação Molecular , Morfinanos/síntese química , Ligação Proteica , Receptores Opioides/química , Receptores Opioides/genética , Receptores Opioides/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
16.
Bioorg Med Chem Lett ; 27(17): 4176-4179, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739044

RESUMO

The essential structure of the orexin 1 receptor (OX1R) antagonist YNT-707 (2) was clarified, particularly the roles to OX1R antagonist activities of the 3-OMe, the 4,5-epoxy ring, the 14-hydroxy group, and the orientation of the 6-amide side chain. The 3-OMe and 17-sulfonamide group were shown to be essential for the OX1R antagonistic activity. The 4,5-epoxy ring plays an important role for the active orientation of the 6-amide group. The 14-hydroxy group could lower the activity of the 6ß-amide isomer by the interaction of the 14-hydroxy group with the 6-amide group, which could orient the 6-amide group toward the upper side of the C-ring. Finally, we proposed the difference in the active conformation between OX1R and κ opioid receptor (KOR), especially in the orientation of the 6-amide group which is expected to be a useful guide for medicinal chemists to design OX1R ligands.


Assuntos
Compostos de Epóxi/farmacologia , Morfinanos/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Sulfonamidas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos de Epóxi/química , Humanos , Estrutura Molecular , Morfinanos/síntese química , Morfinanos/química , Antagonistas dos Receptores de Orexina/síntese química , Antagonistas dos Receptores de Orexina/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
17.
Bioorg Med Chem ; 25(8): 2406-2422, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314512

RESUMO

The enantiomers of a variety of N-alkyl-, N-aralkyl-, and N-cyclopropylalkyl-9ß-hydroxy-5-(3-hydroxyphenyl)morphans were synthesized employing cyanogen bromide and K2CO3 to improve the original N-demethylation procedure. Their binding affinity to the µ-, δ-, and κ-opioid receptors (ORs) was determined and functional (GTPγ35S) assays were carried out on those with reasonable affinity. The 1R,5R,9S-enantiomers (1R,5R,9S)-(-)-5-(3-hydroxyphenyl)-2-(4-nitrophenethyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-16), (1R,5R,9S)-(-) 2-cinnamyl-5-(3-hydroxyphenyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-20), and (1R,5R,9S)-(-)-5-(3-hydroxyphenyl)-2-(4-(trifluoromethyl)phenethyl)-2-azabicyclo[3.3.1]nonan-9-ol (1R,5R,9S-15), had high affinity for the µ-opioid receptor (e.g., 1R,5R,9S-16: Ki=0.073, 0.74, and 1.99nM, respectively). The 1R,5R,9S-16 and 1R,5R,9S-15 were full, high efficacy µ-agonists (EC50=0.74 and 18.5nM, respectively) and the former was found to be a partial agonist at δ-OR and an antagonist at κ-OR, while the latter was a partial agonist at δ-OR and κ-OR in the GTPγ35S assay. The enantiomer of 1R,5R,9S-16, (+)-1S,5S,9R-16 was unusual, it had good affinity for the µ-OR (Ki=26.5nM) and was an efficacious µ-antagonist (Ke=29.1nM). Molecular dynamics simulations of the µ-OR were carried out with the 1R,5R,9S-16 µ-agonist and the previously synthesized (1R,5R,9S)-(-)-5-(9-hydroxy-5-(3-hydroxyphenyl-2-phenylethyl)-2-azabicyclo[3.3.1]nonane (1R,5R,9S-(-)-NIH 11289) to provide a structural basis for the observed high affinities and efficacies. The critical roles of both the 9ß-OH and the p-nitro group are elucidated, with the latter forming direct, persistent hydrogen bonds with residues deep in the binding cavity, and the former interacting with specific residues via highly structured water bridges.


Assuntos
Simulação por Computador , Morfinanos/síntese química , Morfinanos/farmacologia , Receptores Opioides/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Morfinanos/química , Morfinanos/metabolismo , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Receptores Opioides/metabolismo , Espectrometria de Massas por Ionização por Electrospray
18.
ACS Chem Neurosci ; 8(4): 766-776, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28033462

RESUMO

To develop novel analgesics with no side effects or less side effects than traditional opioids is highly demanded to treat opioid receptor mediated pain and addiction issues. Recently, κ-opioid receptor (KOR) has been established as an attractive target, although its selective agonists could bear heterogeneous pharmacological activities. In this study, we designed and synthesized two new series of nepenthone derivatives by inserting a spacer (carbonyl) between 6α,14α-endo-ethenylthebaine and the 7α-phenyl substitution of the skeleton and by substituting the 17-N-methyl group with a cyclopropylmethyl group. We performed in vitro tests (binding and functional assays) and molecular docking operations on our newly designed compounds. The results of wet-experimental measures and modeled binding structures demonstrate that these new compounds are selective KOR agonists with nanomolar level affinities. Compound 4 from these new derivatives showed the highest affinity (Ki = 0.4 ± 0.1 nM) and the highest selectivity (µ/κ = 339, δ/κ = 2034) toward KOR. The in vivo tests revealed that compound 4 is able to induce stronger (ED50 = 2.1 mg/kg) and much longer antinociceptive effect than that of the typical KOR agonist U50488H (ED50 = 4.4 mg/kg). Therefore, compound 4 can be used as a perfect lead compound for future design of potent analgesics acting through KOR.


Assuntos
Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Morfinanos/química , Morfinanos/farmacologia , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Analgésicos Opioides/síntese química , Animais , Humanos , Simulação de Acoplamento Molecular , Morfinanos/síntese química , Estrutura Quaternária de Proteína , Ratos , Receptores Opioides kappa/agonistas , Relação Estrutura-Atividade
19.
Chemistry ; 22(30): 10393-8, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27172347

RESUMO

14-Hydroxymorphinone is converted to noroxymorphone, the immediate precursor of important opioid antagonists, such as naltrexone and naloxone, in a three-step reaction sequence. The initial oxidation of the N-methyl group in 14-hydroxymorphinone with in situ generated colloidal palladium(0) as the catalyst and molecular oxygen as the terminal oxidant constitutes the key transformation in this new route. This oxidation results in the formation of an unexpected oxazolidine ring structure. Subsequent hydrolysis of the oxazolidine under reduced pressure followed by hydrogenation in a packed-bed flow reactor using palladium(0) as the catalyst provides noroxymorphone in high purity and good overall yield. To overcome challenges associated with gas-liquid reactions with molecular oxygen, the key oxidation reaction was translated to a continuous-flow process.


Assuntos
Morfinanos/síntese química , Oxazóis/síntese química , Catálise , Coloides , Hidrogenação , Oxidantes/química , Oxirredução , Oxigênio/química , Paládio , Propriedades de Superfície
20.
Bioorg Med Chem ; 24(10): 2199-205, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27079125

RESUMO

As the reports about C-homomorphinans with the seven-membered C-ring are much fewer than those of morphinan derivatives with a six-membered C-ring, we attempted to synthesize C-homomorphinan derivatives and to evaluate their opioid activities. C-Homomorphinan 5 showed sufficient binding affinities to the opioid receptors. C-Homomorphinan derivatives possessing the δ address moiety such as indole (NTI-type), quinoline, or benzylidene (BNTX-type) functionalities showed the strongest binding affinities for the δ receptor among the three types of opioid receptors, which indicated that the C-homomorphinan skeleton sufficiently functions as a message-part in the ligand. Although NTI-type compound 8 and quinoline compound 9 with C-homomorphinan scaffold exhibited lower affinities and selectivities for the δ receptor than the corresponding morphinan derivatives did, both the binding affinity and selectivity for the δ receptor of BNTX-type compound 12 with a seven-membered C-ring were improved compared with the corresponding compounds with a six-membered C-ring including BNTX itself. BNTX-Type compound 12 was the most selective δ receptor antagonist among the tested compounds.


Assuntos
Morfinanos/química , Morfinanos/farmacologia , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides/metabolismo , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Células CHO , Cricetulus , Humanos , Ligantes , Modelos Moleculares , Morfinanos/síntese química , Naltrexona/análogos & derivados , Naltrexona/síntese química , Naltrexona/química , Naltrexona/farmacologia , Antagonistas de Entorpecentes/síntese química , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Receptores Opioides delta/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...